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Model Updating Using the Closed-Loop Natural Frequency
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Parameter modification of a linear finite element model (FEM) based on a modal sensitivity matrix is usually
performed through an effort to match FEM modal data to experimental ones. However, there are cases where this
method cannot be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity
matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional
modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to
overcome the problems associated with the conventional method based on modal sensitivity matrix. The feedback
loop changes the modal characteristics of the system, and the closed-loop natural frequencies can be used as
additional information to solve the problem caused by lack of reliable modal data. Through proper selection of
exciter and sensor locations and associated feedback gains, the condition number of the modal sensitivity matrix
can be reduced, and a more reliable estimation result can be expected. A parameter modification scheme based on
the closed-loop natural frequency data along with the modal sensitivity modification and controller design method
is explained. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter
estimation based on time-domain input/output data is provided to demonstrate the estimation performance of
proposed method.

I. Introduction

T HE well-known problem of making a reliable model of a flex-
ible structure can be categorized into direct and indirect meth-

ods. The system matrix updated using the direct method can contain
off-diagonal terms indicating a physically impossible structure and
sometimes loses the positive definiteness as a result of incomplete-
ness of the measured mode shapes. To overcome such drawbacks
of the direct approach, an indirect method based on the modal or
frequency-response-function (FRF) sensitivity to parameter pertur-
bation has been developed by many researchers.1,2 The difference
in modal information between model and system are used to esti-
mate suspicious parameters such as joint stiffness of the initial finite
element model (FEM). This way, positive definiteness of mass and
stiffness matrices developed through the use of FEM is guaranteed
while keeping the original structure of FEM intact. This method
encounters two well-known problems1,2: the lack of reliable modal
data and ill conditioning of the modal sensitivity matrix.

The problem of lacking reliable modal data should be considered
first. It is known that natural frequency estimation from measure-
ment data carries less errors because a natural frequency is estimated
using all measured FRFs, whereas an element of mode-shape vector
is calculated from single FRF. Actually, it is reported that errors in
natural frequency estimation from measured data can be reduced
to less than 1% without much difficulty, whereas those in mode-
shape measurement can be in the range of 10%, according to some
experimental results.3 The measured modal data are of complex
values because structural system carries damping, which usually in-
duces complex modal data. To correlate the modal data of system
and model, measured complex modal data should be transformed to
normal modal data because we can obtain only normal modal data
from FEM where damping information is not included. Excluding
the case of proportional damping, normal mode shape from measure-
ment data always includes errors. The bias error contained in nor-

Received 28 July 2003; revision received 5 February 2004; accepted for
publication 9 February 2004. Copyright c© 2004 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0731-5090/05 $10.00 in
correspondence with the CCC.

∗Graduate Student, Department of Mechanical Engineering, Science
Town; elrond@kaist.ac.kr.

†Professor, Department of Mechanical Engineering, Science Town;
yjpark@mail.kaist.ac.kr.

mal mode-shape measurement induces relatively large bias errors in
estimated parameters and consequently degrades the confidence of
the updated model. If all of the unreliable mode-shape measurement
data are discarded, remaining modal data are insufficient to estimate
all of the necessary parameter updates. In this case, the number of the
updating parameters should be reduced in the conventional method.
Attempts to increase the natural frequency measurements in the ab-
sence of error-contaminated mode-shape measurements have been
carried out by many researchers. W. D’ambrogio et al.4 suggested a
method that includes antiresonance points in model updating, and S.
Li et al.5 increased the natural frequency measurements by changing
the boundary conditions of a system. Similarly, N. Nalitolela et al.6

suggested a method to add a point mass or point stiffness to measure
additional natural frequencies of a perturbed system, and recently
P. D. Cha et al.7 implemented this idea to obtain the unique solution
of updating parameters. J. H. Gordis et al.8 and N. Nalitolela et al.9

suggested a methodology based on imaginary boundary conditions.
Recently J. S. Lew and Juang10 adopted an externally imposed feed-
back loop using collocated sensor and actuator to increase the modal
information. Collocated sensor and actuator can increase the modal
information without destabilizing the system. However, all of these
approaches have the following drawbacks: The antiresonance points
are linearly dependent to the natural frequencies, and the number of
measurable antiresonance points is limited. The addition of a point
mass or point stiffness is useful in increasing the modal data, but
difficulties can arise in actual implementation as a result of lim-
its on system modification. The additional natural frequency data
produced by the use of imaginary boundary conditions are not ob-
tained through additional experiments but constructed using mea-
sured FRFs. Small bias errors in measured FRFs can cause large
bias errors in modified FRFs around the new natural frequencies.
The feedback method using collocated sensor and exciter set can
bring no more than the same effect of point mass and point stiffness
method to system. They did not consider the case of noncollocated
sensor and exciter set in which the system can be changed in more
diverse ways but guaranteeing of system stability becomes an is-
sue. In this research, we basically deal with the controller design
of noncollocated sensor and exciter set and propose a method to
maintain the stability of closed-loop system through the weighting
matrix adjustment of controller design performance index.

Ill conditioning of the modal sensitivity matrix can also con-
tribute to inaccurate model updating. Ill conditioning of the sensi-
tivity matrix comes from the fact that the eigendata or FRF sensi-
tivities of some updating parameters are similar to one another and
the difference of those parameters cannot be distinctly determined
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Fig. 1 Concept of feedback loop.

by the use of conventional sensitivity-based methods. This problem
cannot be solved easily without changing the modal characteristics
of the original system. The previous research1,2,11 on this subject
mainly focused on preventing the updating parameters from diverg-
ing during iteration.

To overcome such drawbacks of the indirect approach, we pro-
pose a new method that introduces feedback loops from the sen-
sors to the exciter of the conventional modal test setup as shown
in Fig. 1. The modal data of the closed-loop system change from
the original data as a result of feedback loops. This modal change
can serve as additional information for system identification. Mea-
surements of the closed-loop mode shapes are excluded because
they carry relatively larger errors than closed-loop natural frequen-
cies do. Changing sensor and exciter locations and corresponding
feedback gains can generate various closed-loop natural frequen-
cies. By using all of these natural frequency changes, the shortage
of reliable modal measurements can be overcome. Ill conditioning
of the modal sensitivity matrix can also be resolved as modal sen-
sitivity of the parameters to update are changed by feedback. In
this paper, the process of parameter estimation using the closed-
loop natural frequency measurements is explained. Modification of
the modal sensitivity matrix and the design criterion of the control
loop are discussed. Simulation examples are provided to explain
the modified parameter estimation process and the proposed control
method. And parameter estimation errors according to data num-
ber are provided to demonstrate the performance of the proposed
method compared to the conventional method based on open-loop
modal data.

II. System Description and Basic Updating Procedure
The linear-time-invariant model of a vibrating structure is de-

scribed as follows:

Mẍ + Cẋ + Kx = f = b f (1)

b(i) =
{

1 if i = a
0 if i �= a (2)

where a indicates the exciter position. The modal data of this system
satisfy the following properties:

KW = MW� (3)

W T MW = I, W T KW = � (4)

W = [W1 W2 · · · Wn], � = diag[λi ], λi = ω2
i

(5)

where � and W are n × n matrices of eigenvalues and eigenvectors,
respectively. Each eigenvalue is the square of a natural frequency
as shown in Eq. (5). W is orthonormal to the mass and stiffness
matrices as shown in Eq. (4).

M and K, which we want to update, can be described as the
summation of initial values from FEM, M0 and K0, and their first
perturbations with respect to updating parameters.

M = M0 +
l∑

j = 1

δθ j
∂M
∂θ j

(6)

K = K0 +
l∑

j = 1

δθ j
∂K
∂θ j

(7)

where θ j and l are the updating parameters and their total num-
ber, respectively. ∂M/∂θ j and ∂K/∂θ j can be viewed as sensitivity
of mass and stiffness to updating parameters, respectively. These
matrices can be computed from some initial model such as FEM.
The eigenvalue sensitivity of given updating parameter for the linear
system model with distinct eigenvalues is given as follows1:

∂λt

∂θ j
= W T

t

[
∂K
∂θ j

− λt
∂M
∂θ j

]
Wt (8)

S =
[

∂λt

∂θ j

]
(9)

where S is eigenvalue sensitivity matrix and subscript t is used to
represent target mode. If the difference between system and its initial
model can be expressed as a first-order perturbation with respect to
updating parameters, the modal data discrepancy between system
and model is linearly related to the parameter perturbation.

δz = Sδp (10)

where δp = pr − p, δz = zr − z, p is the updating parameter vector,
and z is the eigenvalue vector of model, respectively. Symbols with
the subscript r represent the actual system properties. Modal data
of system are complex-valued data because the damping of system
induces the phase variation in modal data. We have to use normalized
modal data to correlate with normal modal data of FEM, and zr

is a normalized modal data from complex modal data. Using the
following performance index, parameters are estimated to minimize
the difference between z and zr .

J (δp) = (δz − Sδp)T (δz − Sδp) (11)

Least-square solution of this problem is obtained using the general-
ized inverse as follows:

δp = S+δz (12)

In general, iterative parameter estimation is used to compensate
for the nonlinearity of the relation between the updated parameters
and the modal data. If the variance information of the measurement
noise is available, statistical solvers such as minimum variance es-
timation can be used in parameter estimation, and the noise effect
on estimated parameters can be minimized.

III. Parameter Estimation Procedure Using
Closed-Loop Modal Data

A parameter estimation procedure using closed-loop modal data is
proposed. To use the closed-loop modal data, the governing equation
for the linear-time-invariant system and its modal sensitivity matrix
are modified considering exciter dynamics and feedback loop.

A. Formulation of the Closed-Loop System
Figure 2 shows the conceptual diagram of the proposed feedback

method. Adding sensor signals to the exciter reference signal gener-
ates the feedback loop. In a conventional modal test, the output and
input signals are measured using accelerometers and a force trans-
ducer located at the stinger tip of an exciter. Such an input-output
configuration corresponds to positions (b) and (c) in Fig. 2. In the
closed-loop system, the input–output configuration is changed to
positions (a) and (c) in Fig. 2. In this case, the exciter is included in
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Fig. 2 Concept of feedback loop.

closed-loop system, and its dynamics should be modeled. The me-
chanical part of the electromagnetic exciter comprises the armature
mass and the spring.

ma ẍa + ca ẋa + ka xa + fa = fe (13)

where ma , ka , ca , and xa are armature mass, spring stiffness, damp-
ing, and armature displacement, respectively. The electromagnetic
force fe vibrates the armature mass and transmits the excitation
force fa to the target structure through a stinger connection. Equa-
tion (13) can be denoted using the displacement vector of the system
as follows:

ma ẍ + ca ẋ + kax + fa = fe (14)

where ma is a row vector whose elements are zero except the ath el-
ement, which is ma . Structures of ca and ka follow the same pattern.
The input to this exciter is the summation of the exciter reference
signal and the output signals multiplied with proper gains. We con-
fine the type of the controller to static output feedback control for
design simplicity.

fe = µF (r − k f x − c f ẋ − m f ẍ) (15)

where r is the exciter reference signal and k f , c f , and m f are the
feedback gains for displacement, velocity, and acceleration mea-
surements, respectively; µF is used to express the dynamics of the
exciter amp. As the dynamics of the electric circuit become faster
than that of the mechanical part, µF can be assumed as a constant
value over the operating frequency range. By adding Eqs. (14) and
(15) to Eq. (1), the following linear model for closed-loop system
can be obtained:

(M + bma + µF bm f )ẍ + (C + bca + µF bc f )ẋ

+ (K + bka + µF bk f )x = µF br (16)

Original mass, damping, and stiffness matrices are added with the
exciter dynamics and feedback gain matrices. Armature mass and
spring stiffness of the exciter can be easily measured. Then we can
change the system by adjusting the feedback gains. Note that the
symmetry in each of the mass, damping, and stiffness matrices is
lost by the use of the feedback loop. This asymmetry in the system
matrices requires some modification in the updating procedure as
the conventional computation of the modal sensitivity matrix relies
on symmetry of the mass and stiffness matrices.

B. Modified Updating Procedure
The mass and stiffness matrices after the feedback loop are as

follows:

M f = M0 + bma + µF bm f (17)

K f = K0 + bka + µF bk f (18)

For asymmetric system matrices, the left and right eigenvectors
corresponding to the same eigenvalue are not identical, and the fol-
lowing biorthogonality holds:

K f W R = M f W R� (19)

KT
f W L = MT

f W L� (20)

(W L)T K f W R = �, (W L)T M f W R = I (21)

where W L and W R are the left and right eigenvectors, respectively.
Equation (21) is the description of the biorthogonality. The modified
eigenvalue sensitivity with respect to updating parameters based on
the biorthogonality is as follows:

∂cλt

∂θ j
= (

W L
t

)T
[

∂K f

∂θ j
− cλt

∂M f

∂θ j

]
W R

t (22)

Though system matrix symmetry does not hold, the sensitivity ma-
trix can be obtained by computing the left and right eigenvectors of
the closed-loop model. Refer to the Appendix for a detailed deriva-
tion. Based on this modified sensitivity matrix, the linear relation-
ship between updating parameter and modal data can be represented
as follows:

zi
r − zi = Siδp (23)

where superscript i is used to represent the closed-loop eigenvalue
and its sensitivity matrix using i th feedback loop setup. The closed-
loop eigenvalues for many feedback control settings are added to
the performance index.

J (δp) = (δz0 − S0δp)T (δz0 − S0δp) + (δz1 − S1δp)T (δz1 − S1δp)

+ · · · + (δzk − Skδp)T (δzk − Skδp) = (δz − Tδp)T (δz − Tδp)

(24)

where T and δz are defined as

TT = [(S0)T (S1)T · · · (Sk)T ]

δzT =
[(

z0
r − z0

)T (
z1

r − z1
)T · · · (

zk
r − zk

)T
]

(25)

The minimization of the performance index in Eq. (24) requires the
following matrix inverse problem solved:

Tδp = δz (26)

where T is the combined sensitivity matrix. The inclusion of closed-
loop eigenvalues results in the increased measurement data and
the change of sensitivity matrix. Measurement number increases
through the use of feedback loops, whereas the number of updating
parameters does not change. This means that the deficiency of reli-
able measurements can be overcome by the use of feedback loops.
We can change the eigenvalue sensitivity by the use of the feed-
back loop as well. If we design the feedback controller properly,
the condition of combined sensitivity matrix T can be improved as
the structural modification by the feedback loop changes the eigen-
value sensitivity to each parameter. For this reason, the control-loop
design is very important.

IV. Control-Loop Design
Control-loop design comprises the selection of sensor and ex-

citer locations and associated feedback gains. The characteristics
of closed-loop modal data should be checked to achieve aforemen-
tioned goals. By using modal data sensitivity to a feedback gain, we
will check approximate properties of the closed-loop modal data.

A. Characteristics of Closed-Loop Modal Data
Let us consider the case where accelerometers are used as output

sensors for control loop. Feedback gain matrices are formulated as
follows:

m f = [g1 g2 · · · gn], c f = 0, k f = 0 (27)

where gs is the feedback gain corresponding to the accelerometer
located in sth degree of freedom (DOF). Then the mass and stiffness
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matrices change by the feedback loop addition as follows:

M f = M̄ + bm f = M̄ +




0 · · · 0 · · · 0
...

...

g1 g2 · · · gn
...

...

0 · · · 0 · · · 0




(28)

K f = K̄ (29)

where M̄ and K̄ are system matrices including armature mass and
spring stiffness of the exciter in Eqs. (17) and (18). Changes in
the mass matrix are concentrated on the ath row where the exciter
is attached. Let us consider the partial differentiation of system
matrices with respect to gs to estimate modal data changes.

∂M f

∂gs
=




0 · · · 0 · · · 0
...

...

0 · · · 1 · · · 0
...

...

0 · · · 0 · · · 0




,
∂K f

∂gs
= 0 (30)

All elements of ∂M f /∂gs except the element (a, s) are zero. Using
these equations, the modal sensitivity to feedback gain gs is com-
puted. Feedback gain gs corresponds to the sensor output located in
sth DOF:

∂λt

∂gs
= W T

t

(
∂K f

∂gs
− λt

∂M f

∂gs

)
Wt

= −W T
t λt

∂M f

∂gs
Wt = −λt WtaWts (31)

where subscript t is used to denote the target mode we want to move.
The change of target eigenvalue λt is proportional to values of target
mode shape Wt at sensor location Wts and the exciter location Wta.
Sensitivity of target mode shape Wt for the linear model with distinct
eigenvalues can be derived in the same way using the well-known
equation of mode-shape sensitivity.1,2

∂Wt

∂gs
=

n∑
j = 1, j �= t

W j W T
j

λt − λ j

(
∂K f

∂gs
− λt

∂M f

∂gs

)
Wt − 1

2
Wt W

T
t

∂M f

∂gs
Wt

=
( n∑

j = 1, j �= t

λt W ja

λt − λ j
W j − 1

2
WtaWt

)
Wts (32)

From Eqs. (31) and (32), we can estimate closed-loop modal
data with single-sensor feedback assuming a small feedback gain
(gs � 1).

cλt � λt − λt WtaWtsgs (33)

cWt � Wt + ∂Wt

∂gs
gs

=
(

1 − gs

2
WtaWts

)
Wt + gsλt

n∑
j = 1, j �= t

WjaWts

λt − λ j
W j (34)

The subscript c is used to designate closed-loop data. The closed-
loop modal data using multiple sensors can also be derived in a
similar way. Let us consider the case where m sensors are used:

m f = [
gs1 gs2 · · · gsm

]
Ds = GT Ds (35)

where Ds is a m × n boolean matrix for sensor locations. All el-
ements in the j th column of Ds are zero except at the j th sensor

location. Gradients of λt about multiple sensor locations are ob-
tained as

∂λt

∂G
=

[
∂λt

∂gs1

∂λt

∂gs2

· · · ∂λt

∂gsm

]T

= −λt Wta

[
Wts1 Wts2 · · · Wtsm

]T
(36)

Using Eq. (36), approximate closed-loop natural frequency is de-
rived as

cλt � λt + ∂λt

∂GT
G = λt − λt Wta

m∑
k

Wtsk gsk (37)

In the same way, the closed-loop mode shape for multiple sensor
locations can be obtained based on Eq. (34) as

cWt � Wt + ∂Wt

∂GT
G =

(
1 − 1

2
Wta

m∑
k = 1

Wtsk gsk

)
W t

+
m∑

k = 1

n∑
j = 1, j �= t

λt WjaWtsk

λ j − λt
W j gsk (38)

Note that closed-loop modal data are closely related to mode-shape
values at sensor and exciter locations. If the mode-shape value at
the sensor location is large, the modal data change becomes rela-
tively large with the same feedback gain. The closed-loop eigendata
derived in this section do not apply for the system with repeated
eigenvalues. Modal sensitivity for repeated eigenvalues should be
used to calculate perturbed closed-loop modal data and that case is
not considered in this paper.

B. Sensor and Exciter Location
If the closed-loop system has different modal sensitivities from

the original ones, the independence of closed-loop modal data from
original ones can be achieved through proper selection of sensor
locations and gain allocation for each sensor. The level of modal
sensitivity independency is reflected in the condition number of the
combined sensitivity matrix. If the condition number of the com-
bined sensitivity matrix is low, closed-loop modal data are highly
independent from the original ones, and vice versa. By inspecting
Eqs. (22) and (25), we can notice that the eigenstructure should be
changed from the original ones to enhance the condition of the com-
bined sensitivity matrix. As it is rather difficult to change all modes
in the frequency range of interest, each control-loop design is de-
voted to change a specific target mode. As shown in Fig. 3, control
loops 1 and 2 are designed to change modes 1 and 2, respectively.
The design sequence of control loop is shown in Fig. 4. Let us try
to find the proper sensor location by using following criteria that
represent the degree of change in eigenstructure.

C1 = cλt − λt , C2 = W T
t M(cWt − Wt ) (39)

Using Eqs. (33) and (34), the criteria can be simplified for the case
of a single sensor.

C1 = λt WtaWtsgs, C2 = 1
2 WtaWtsgs (40)

Fig. 3 Development of combined sensitivity matrix.
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Fig. 4 Design sequence of control loop.

Note that placing sensors and exciters at the points with high mode-
shape values induces large modal changes. This means that antinodal
points are efficient candidates for sensor and exciter locations to
change the corresponding eigenstructure.

C. Feedback Gain Design
If we use just a single-sensor location, the proper sensor loca-

tion is the point where C1 and C2 have the largest value. And the
design of feedback gain corresponding to the sensor location is not
necessary. We just increase or decrease the gain until the mode is
changed moderately without breaking system stability. But there can
be some limits on the range the mode can be changed using single
sensor. With multiple sensor points where C1 and C2 have relatively
large values, modal change extents depends on the feedback gain
allocation for each sensor. Previous research12 about static output
feedback controller dealt with methods to obtain the feedback gain
vector minimizing the system energy of initial states. This type of
control object is not a proper choice in changing some modes largely
because the goal of conventional controllers is to minimize the sys-
tem energy not to change some modes. Then we have to make new
criteria for the new control purpose. The following list shows major
issues that need to be addressed:

1) The feedback gain vector for selected sensor locations should
accomplish predefined modal change.

2) Required control power should be minimized.
3) The norm of control gain vector should be restricted for system

stability.
To define the performance index satisfying upper issues, control

power should be defined. For theoretical derivation, the computa-
tion of control power is needed. We used proportional damping
assumption to compute the control power of each mode. The linear
system model defined in Eq. (1) can be transformed to modal coor-
dinates using the relation between the displacement and the modal
displacement.

x = Wη (41)

η̈(t) + C′η̇(t) + �η(t) = N(t) (42)

where η and N are modal coordinate and modal force, respectively.
N and C′ are defined using mode-shape matrix W as follows:

N = W T f , C′ = W T CW (43)

With the assumption of proportional viscous damping, the system
equation can be decoupled into individual modal equation.

η̈i (t) + 2ζiωi η̇i (t) + ω2
i η(t) = Ni (t) i = 1, 2, . . . , n (44)

Ni (t) = W T
i f (t) = W T

i b f (t) = Wia f (t) (45)

f (t) = µFr(t)

1 + (ω/ωa) j
(46)

where Wi is the i th mode-shape vector and Wia is the mode-shape
value at the exciter location. Band-limited excitation force f is as-
sumed to be a first order system with cutoff frequency ωa as in

Eq. (46). Assuming l modes are excited and m accelerometers are
used to measure the vibration, the control force is expressed as
follows:

fc = GT Ds ẍ(t) = GT Ds W η̈(t) = GT Ŵ η̈(t) (47)

Ŵ = Ds W (48)

where G is m × 1 feedback gain vector and Ds is m × n sensor
location matrix. W is n × l mode-shape matrix and η is l × 1 modal
coordinate vector. Ŵ is the mode-shape matrix in sensor locations.
Assuming small feedback gains, the expression of control power
leads to

E
[

f 2
c

] = E[η̈T Ŵ T GGT Ŵ η̈]

= tr [Ŵ T GGT Ŵ	] = tr [GT QG] (49)

where modal power matrix 	 is defined as

	 = E[η̈η̈T ] = diag
(

E
[
η̈2

1

]
, E

[
η̈2

2

]
, . . . , E

[
η̈2

l

])
(50)

Let us consider the vibration power of each modal coordinate. The
transfer function from the reference signal r in Eq. (15) to each
modal coordinate η̈i is in the form of

H = ( jω)2

( jω)2 + 2ζi ( jω) + ω2
i

· µF Wia

1 + ( jω)/ωa
(51)

The vibration power of each modal coordinate is computed as13

E
[
η̈2

i

] =
∫ ∞

−∞
|H |2 Sr dω = π(2ζi + ωi/ωa)ωaµ

2
F W 2

ia Sr

2ζi

(
1 + ω2

i

/
ω2

a

) + 4ζ 2
i · ωi/ωa

� π(2ζi + ωi/ωa)ωaµ
2
F W 2

ia Sr

2ζi

(
1 + ω2

i

/
ω2

a

) (52)

where Sr is the power spectrum of the reference signal. The vibra-
tion power of each modal coordinate is proportional to the cutoff
frequency and inversely proportional to the damping ratio. Using
Eqs. (37) and (38), C1 and C2 for multiple sensor locations are
expressed as

C1 = λt Wta

m∑
k = 1

Wtkgsk , C2 = 1

2
Wta

m∑
k = 1

Wtkgsk (53)

As C1 and C2 have the same structure, we can combine them into
one criterion as

Ct =
m∑

k = 1

Wtkgsk = Ŵ T
t G (54)

Now, the performance index satisfying the aforementioned criteria
can be expressed as follows:

J = E
[

f 2
c

] + α(GT G) + L(Ct − εt )

= tr(GT Ŵ	Ŵ T G) + α(GT G) + L
(
Ŵ T

t G − εt

)
(55)

where α is a weighting to the magnitude of feedback gain vector
and L is Lagrange multiplier to include the constraint of prede-
fined modal change εt . The minimization of performance index will
generate a feedback gain vector that satisfies the predefined modal
change.

G = (Ŵ	Ŵ T + α I )+Ŵtεt

Ŵ T
t (Ŵ	Ŵ T + α I )+Ŵt

(56)

Jmin = ε2
t

Ŵ T
t (Ŵ	Ŵ T + α I )+Ŵt

(57)
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Basically, feedback gain vector has a similar shape with nor-
mal mode-shape vector Ŵt , with a distortion by vibration power
distribution 	 through modal coordinates. 	 can be thought as a
kind of weighting matrix to modal power and can be allocated ac-
cording to the designer’s intents in real implementation. The reason
we use 	 in the derivation is to clarify the effect of 	 to the feed-
back gain vector. In simulation example, the effect of 	 change to
closed-loop system is demonstrated. If normal mode-shape matrix
Ŵ estimated from measured input–output data is available and 	
is allocated properly to Eq. (55), then the feedback controller is
computed directly from Eq. (56).

D. Summary
We dealt the design method of proper sensor locations and cor-

responding gain vectors for condition improvement of combined
eigenvalue sensitivity matrix. Effective sensor and exciter locations
are decided based on the perturbation of modal data by closed
loop. And the associated gain vector is designed to change the
target mode minimizing the control power and the norm of gain
vector.

V. Simulation: Beam Thickness Estimation
Let us consider a numerical example to explain the parameter

estimation process and the proposed control method. The system is
a clamped-free beam with thickness variation as shown in Fig. 5.
Force in vertical displacement direction is applied in a point near
clamped side and the vertical displacements are measured using 10
accelerometers. Initial model for this system is constructed using
the FEM with 10 elements. The initial thickness of the model is
assumed constant as shown here, and thicknesses of elements 2 to 9
are going to be estimated using the five lowest measured modal data:
density is 7.789 × 103 kg/m3, length is 0.75 m, thickness is 4.8 mm,
width is 0.024 m, and Young’s modulus is 2.078 × 1011 N/m.

A. Open-Loop Data
To obtain input–output data, time-domain simulation is per-

formed using MATLAB®. Noises of signal-to-noise ratio (SNR)
20dB are added to both of input and output and 8192 time-
domain samples are measured using 3-kHz sampling frequency.
Observer/Kalman-filter identification14 is used to estimate impulse
responses and FRF curves from noise corrupted input–output data
set. From measured FRF curves or impulse responses, normal modal
data are extracted using the eigensystem realization algorithm14 and
the modal data-acquisition method by Alvin.15 The five lowest nat-
ural frequencies and associated 10 × 5 self-normalized mode-shape
matrix are extracted. Now, the number of open-loop modal data are
55 summing up the number of natural frequencies and mode-shape
matrix elements. The model and system show similar FRF shapes,
but natural frequencies and mode shapes are different by the thick-
ness variation of system from model. The modal difference between
model and system are provided in Table 1 and Fig. 6. The difference
of natural frequencies is definite, but the measured mode shape does

Fig. 5 Beam with thickness variations.

Table 1 Natural frequencies of model and system

Mode Model, Hz System, Hz

1 7.044 6.780
2 44.389 38.234
3 124.284 108.179
4 243.734 211.457
5 403.489 357.404

Fig. 6 Mode shapes of model and system.

Fig. 7 Block diagram of control loop.

not show a clear difference from that of model. In this case, the ef-
fect of errors in measured mode shape can be magnified in estimated
parameters, although it looks like the number of open-loop modal
data are enough to estimate eight point beam thicknesses from ele-
ments 2 to 9. To avoid the use of measured mode shape, we have to
generate another more data to overcome the shortage of modal data.

B. Closed-Loop Data
In this section, we will show the procedure of controller design.

The block diagram of the closed-loop system is shown in Fig. 7,
where a low-pass filter is introduced to prevent high-frequency
modes from being driven to unstable modes. In this example, a
second-order low-pass filter of cutoff frequency 1 kHz and damp-
ing ratio 0.3 is used to suppress modes above 1 kHz as the inter-
ested modes are below 600 Hz. In closed-loop simulation, seven
accelerometers are attached in locations 2, 4, 6, 7, 8, 9, and 10 in
Fig. 5. 	 in Eq. (50) can be thought as a kind of weighting to modal
power and can be allocated according to designer’s intents. Let us
look at the change of closed-loop FRFs according to the allocation
of 	. The target mode is decided as the fourth mode.

	 = diag(10−2, 10−2, 10−2, 10−2, 10−2, 10−2, 10, 10, 10)

α = 1, (58)

where modes from 1–6 are allowed to move freely as associated
modal power are assigned relatively low. Figure 8 shows result-
ing FRFs of the closed-loop system compared to the open-loop
system. Simulation condition for time-domain input–output data
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a) H10,2 b) Zoomed H10,2

Fig. 8 FRF curves of open-loop system and closed-loop system: case 1.

a) H10,2 b) Zoomed H10,2

Fig. 9 FRF curves of open-loop system and closed-loop system: case 2.

set and modal data-acquisition method are identical with the open-
loop case. A magnitude increase of closed-loop FRF compared to
open-loop FRF around 1 kHz in Fig. 8a is caused by the use of
second-order low-pass filter of cutoff frequency 1 kHz. Along with
the change of target mode, that is, the fourth mode in this case, other
modes move too. Especially, modes 3, 5, and 6 are changed largely
for we set associated modal power relatively low. Note that damping
of the fifth mode is decreased from that of an open-loop system. To
prevent the damping decrease of the fifth mode and maintain the
stability of the closed-loop system, control power to the fifth mode
should be set low to preserve the fifth mode unchanged. Then 	 is
modified as

	 = diag(10−2, 10−2, 10−2, 10−2, 10, 10−2, 10, 10, 10) (59)

Resulting FRFs in Fig. 9 show that fifth mode remains unchanged.
We can see what role 	 does in controller design. To verify the
change of control force according to 	 distribution, normalized
correlations between feedback gain vector G and lowest nine mode-
shape vectors of case 1 in Eq. (58) and case 2 in Eq. (59) are shown
in Fig. 10. Correlation of G and the fifth mode is suddenly reduced
to near zero from case 1 to case 2. As you can see in Eq. (47), if
the inner product of feedback gain vector G and mode-shape vector
Ŵi of a mode is small, the control force to that mode diminishes. If
system damping is severely nonproportional, the fifth mode cannot

be fixed perfectly, and the change of system will be quite different
from what is expected. But if system damping can be assumed to
be just a little different from proportional damping, the fifth mode
will move little, although it cannot be fixed perfectly. This damping
assumption is quite well suited in a lightly damped system, where
the proposed method can be applied without much difficulty.

C. Thickness Estimation Result and Analysis
Now, let us estimate thickness using the five lowest modal data.

In an open-loop case, the number of available data are 55 summing
up the five lowest natural frequencies and associated 10 × 5 mode-
shape matrix. For the closed-loop case, five closed-loop systems
are generated using the proposed controller design method and five
closed-loop natural frequencies are measured in each closed-loop
system. Consequently, a total of 30 natural frequencies of open-
and close-loop system are available to estimate eight point thick-
nesses. Each closed-loop controller is designed using 	 distribution
in Eq. (58) with different target mode and εt . The generated closed-
loop natural frequencies are shown in Table 2. Errors in natural
frequency measurements and self-normalized mode-shape measur-
ments are computed as

σ(ωe) = 3.62 × 10−2 Hz, σ (Ŵe) = 3.264 × 10−3 (60)
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Table 2 Natural frequency generation through target mode changes

Mode 1 2 3 4 5

Open-loop, Hz 6.780 38.234 108.179 211.457 357.404
Closed-loop case 1 6.177 41.515 110.917 185.375 324.602
Target mode: 1st mode (−0.603) (+3.281) (+2.738) (−26.082) (−32.802)
Closed-loop case 2 6.821 34.923 119.966 183.341 350.836
Target mode: 2nd mode (+0.041) (−3.311) (+11.787) (−28.116) (−6.567)
Closed-loop case 3 6.782 39.237 95.224 222.046 351.940
Target mode: 3rd mode (+0.002) (+1.003) (−12.954) (+10.589) (−5.463)
Closed-loop case 4 6.769 37.241 113.650 193.463 374.551
Target mode: 4th mode (−0.011) (−0.993) (+5.471) (−17.995) (+17.147)
Closed-loop case 5 6.769 38.076 107.076 222.233 325.478
Target mode: 5th mode (−0.010) (−0.157) (−1.102) (+10.775) (−31.926)

Fig. 10 Correlation between G and mode-shape vectors.

Fig. 11 Thickness estimation (closed-loop method, data number: 25).

where σ is standard deviation and subscript e is used to denote
measurement error. To compare open- and closed-loop cases, five
open-loop natural frequencies and 20 closed-loop natural frequen-
cies are used in the closed-loop case, whereas five open-loop natural
frequencies and 20 normal mode-shape values are used in the open-
loop case. Estimated parameters using 25 open- and closed-loop
natural frequency measurements converge to actual thickness dis-
tribution as shown in Fig. 11, whereas estimated parameters using 25
open-loop modal data in Fig. 12a show a large deviation from the ac-
tual thickness distribution. The performance difference is caused as
normal mode-shape measurements are contaminated by many more

a) Data number: 25

b) Data number: 45

Fig. 12 Thickness estimation (open-loop method).

errors than natural frequency measurements. Basically, natural fre-
quency measurements carry fewer errors as a natural frequency is
estimated using all meausured FRFs, whereas a single element of a
mode-shape vector is caculated from a single FRF. Even more, many
processes such as mode-shape expansion and normalization are re-
quired to extract normal mode shapes from measured FRFs, and
these bring error contamination in normal mode shapes. To achieve
a performance similar to Fig. 11, much more data are required in
the open-loop case as shown in Fig. 12b. To compare the estimation
performance of the open-loop method and the closed-loop method,
the error norm of estimated thicknesses are plotted according to data
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a) Error norm according to data number

b) Condition number of sensitivity matrix

Fig. 13 Comparison of open- and closed-loop method.

number in Fig. 13a, and the associated condition number of the sen-
sitivity matrix according to the data number is shown in Fig. 13b.
Much more data are required for the open-loop method to achieve
a similar estimation performance of the closed-loop method. This
result shows one benefit of the proposed method. We can get a re-
liable estimation result with a smaller number of data. This result
comes from the fact that we can generate less contaminated natural
frequency measurements through diverse construction of intentional
closed-loop systems.

VI. Conclusions
In this research, a novel concept that introduces feedback loop

from sensors to exciter of conventional modal test setup is proposed.
This method uses closed-loop modal data to overcome the problems
of the conventional sensitivity-based method in parameter modifi-
cation of the linear model. At first, new energy paths generated by
the feedback loop change the modal characteristics of the system,
and these additional closed-loop modal data can solve the problem
caused by the deficiency of the modal data. Secondly, the feedback
loop alternates modal sensitivities of parameters. Through the feed-
back loop, we can change similar modal sensitivities of some param-
eters and consequently achieve better estimation of parameters. We
derived approximate closed-loop modal data as a function of sensor
locations and associated feedback gain. Based on these properties,
we proposed a design method of static output feedback controller
for noncollocated sensor and exciter set. The proposed controller
is efficient in changing target modes. Simulation studies about the
parameter estimation performance of conventional methods and the

proposed method show that we can achieve better estimation per-
formance with a smaller number of data.

Appendix: Closed-Loop Eigenvalue Sensitivity
The closed-loop system has the following biorthogonality:

K f W R = M f W R�c (A1)

KT
f W L = MT

f W L�c (A2)

(W L)T K f W R = �c, (W L)T M f W R = I (A3)

From Eq. (A1), the following equation holds for t th eigenvalue:

(
W L

t

)T
(K f − cλt M f )W R

t = 0 (A4)

Differentiating both sides of Eq. (A4) with j th updating parameter
results in

∂
(
W L

t

)T

∂θ j
(K f − cλt M f )W R

t + (
W L

t

)T ∂(K f − cλt M f )

∂θ j
W R

t

+ (
W L

t

)T
(K f − cλt M f )

∂W R
t

∂θ j
= 0 (A5)

From Eqs. (A1) and (A2), the first and third terms in Eq. (A5) are
0, and we can simplify Eq. (A5) as

∂(K f − cλt M f )

∂θ j
= ∂K f

∂θ j
− ∂cλt

∂θ j
M f − cλt

∂M f

∂θ j
(A6)

Multiplying (W L
t )T in the left side and W R

t in the right side of
Eq. (A6) results in

(
W L

t

)T ∂(K f − cλt M f )

∂θ j
W R

t = (
W L

t

)T ∂K f

∂θ j
W R

t

− (
W L

t

)T ∂cλt

∂θ j
M f W R

t − cλt

(
W L

t

)T ∂M f

∂θ j
W R

t

= (
W L

t

)T ∂K f

∂θ j
W R

t − ∂cλt

∂θ j
− cλt

(
W L

t

)T ∂M f

∂θ j
W R

t = 0 (A7)

Then closed-loop eigenvalue sensitivity is derived as

∂cλt

∂θ j
= (

W L
t

)T
(

∂K
∂θ j

− cλt
∂M
∂θ j

)
W R

t (A8)
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